Active Catalysts in Oxidative Coupling of Methane

Kiyoshi Otsuka* and Takayuki Komatsu

Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan

The NaCl/Mn-oxide catalyst shows higher catalytic activity than any previously reported in converting methane into ethylene and higher alkenes with yields of 15.7—30.6% at 750 °C.

Oxidative dehydrogenation and coupling of CH_4 producing C_2 hydrocarbons ($C_2H_6+C_2H_4$) has attracted much attention since the pioneering work of Keller and Bhasin.¹ Many groups^{2—7} are working in this area and there is increasing industrial activity.⁸ However, the reactivities of the catalysts reported recently for synthesizing C_2 hydrocarbons are still not satisfactory.

We have already reported that the oxides of the first-row transition elements, such as the oxides of Ni, Ti, and Zn, containing lithium chloride had high catalytic activities in the selective synthesis of C_2H_4 from CH_4 . The highest space time yields (S.T.Y.) observed for the synthesis of C_2 hydrocarbons were 27 and 11 mmol (g-cat)⁻¹ h⁻¹ for the LiCl-added manganese oxide (denoted as LiCl/Mn-oxide) and LiCl/Nioxide, respectively.

Tentative experiments showed that the addition of NaCl instead of LiCl to manganese oxides gave better C_2 -S.T.Y. (S.T.Y. for the synthesis of C_2 hydrocarbons) compared to that for LiCl/Mn-oxide. However, NaCl/Ni-oxide did not show better catalytic activity in the synthesis of C_2 compounds than that observed for LiCl/Ni-oxide. We now report results for NaCl/Mn-oxides which show better catalytic activities than literature values. 1-7

Powdered NaCl/Mn-oxides catalysts, containing 20 mol% sodium metal, were prepared from NaCl and MnO_2 as the initial manganese oxide. The catalysts were pretreated in air at 750 °C for 2 h before use. The catalysts were studied using a fixed-bed reactor with a conventional gas-flow system at atmospheric pressure using helium as carrier gas. The products after 25 min on stream were measured by gas chromatography. The conversion of CH_4 , the selectivities, and the yields of the products were calculated on the basis of carbon number of CH_4 reacted.

Table 1 shows the conversions of CH₄ and O₂, the selectivity

for hydrocarbon formation ($\geq C_2$), and the yields of hydrocarbons observed for NaCl/Mn-oxide and LiCl/Ni-oxide catalysts. The former catalyst was mechanically mixed with quartz sand (5 g) as a diluent before being packed in the reactor because the dispersion of the catalyst increased the total yields of hydrocarbons. The experimental conditions are given in Table 1. Oxygen-containing organic compounds such as MeOH and HCHO were not produced. As can be seen in Table 1, the main products are C_2H_4 under any conditions tested. It is to be noted that C₃H₆, C₄H₈, benzene, and toluene are also produced. The selectivity for the formation of total hydrocarbons ($\geq C_2$) observed for NaCl/Mn-oxide at a pressure of reactant 0.09 atm reached 30.6%. S.T.Y.s of C₂ compounds $(C_2H_4 + C_2H_6)$ and of total hydrocarbons $(\geq C_2)$ increased linearly with increasing pressure of reactants. The highest S.T.Y.s of total hydrocarbons observed are 72.3 mmol $(g-cat)^{-1} h^{-1}$ (48.2 mmol m⁻² h⁻¹) for NaCl/Mn-oxide and 18.5 mmol (g-cat) $^{-1}$ h $^{-1}$ (43.0 mmol m $^{-2}$ h $^{-1}$) for LiCl/Nioxide. The highest C_2 -S.T.Y. in Table 1 is 64.0 mmol (g-cat)⁻¹ h^{-1} (42.7 mmol m^{-2} h^{-1}) for NaCl/Mn-oxide. These values are higher than any previously reported. 1—7 For example, the highest C₂-S.T.Y. previously observed for LiCl/Mn-oxide was 27 mmol (g-cat)⁻¹ h⁻¹ under the conditions T = 750 °C, $P(CH_4) + P(O_2) = 0.84$ atm, $P(CH_4) : P(O_2) = 2 : 1$, total gas flow rate = 100 ml min^{-1} , weight of catalyst = 1.00 g.^{4c} The C2-S.T.Y. observed for NaCl/Mn-oxide in Table 1 under similar conditions is $50.4 \text{ mmol } (g\text{-cat})^{-1} \, h^{-1}, \, 1.9 \, \text{times greater}$ than the value for the LiCl/Mn-oxide. Since the oxygen in the reactants was almost completely consumed (O2 conversion >93%) during passage through the catalyst bed, we can expect higher S.T.Y.s than those in Table 1 when the flow rate of the reactants and the partial pressure of oxygen are increased further than the conditions described in Table 1.

The NaCl/Mn-oxide is superior to the LiCl/Mn-oxide for the

Table 1. Pressure effects on the yields and S.T.Y.s of the products in partial oxidation of methane over NaCl/Mn-oxide and LiCl/Ni-oxide.a

Catalyst		NaCl/Mn-oxide					
P(CH ₄) + P(O ₂)/atm Catalyst weight/g CH ₄ conversion/% O ₂ conversion/%	0.09 0.40 46.8 99.4	0.19 0.40 46.1 98.8	0.34 0.40 41.5 99.5	0.64 0.40 38.9 92.9	0.83 0.40 36.1 97.4	1.00 0.25 32.0 97.6	0.83 1.00 31.9 93.5
% Selectivity to hydrocarbons ($\geq C_2$)	65.2	56.0	51.4	45.5	53.1	48.9	49.0
% Yields C_2H_4 C_2H_6 C_3H_6 C_4H_8 Benzene + toluene Total hydrocarbons	25.7 1.7 0.5 1.9 0.8 30.6	19.8 2.2 0.6 2.8 0.4 25.8	16.8 2.6 0.7 0.9 0.4 21.3	14.2 1.9 0.9 0.4 0.2 17.6	14.9 2.2 1.1 0.7 0.3 19.2	11.9 2.0 0.9 0.5 0.2 15.7	11.3 3.2 0.5 0.5 0.1 15.7
S.T.Y./mmol (g-cat) $^{-1}$ h $C_2H_4 + C_2H_6$ Total hydrocarbons	9.2 10.2	14.7 17.3	23.4 25.7	36.7 40.1	50.4 56.6	64.0 72.3	17.2 18.5

a Reaction conditions: T = 750 °C; $P(CH_4)$: $P(O_2) = 2$: 1, total gas flow rate = 100 ml min⁻¹.

following reasons. (i) As described above, the catalytic activity of the NaCl/Mn-oxide is greater than that of the LiCl/Mn-oxide. (ii) Deactivation of the latter catalyst commenced after 2 h stream, but no deactivation of the former catalyst was observed after 8 h.

In conclusion, the high catalytic activity and good stability of the catalyst observed for NaCl/Mn-oxide suggest that this is a promising catalyst for oxidative coupling of methane.

Received, 29th September 1986; Com. 1384

References

- 1 G. E. Keller and M. M. Bhasin, J. Catal., 1982, 73, 9.
- 2 W. Hinsen, W. Bytyn, and M. Baerns, Proc. 8th Int. Congr. Catal., 1984, vol. 3, 581.

- 3 T. Ito, Ji-Xiang Wang, Chiu-Hsun Lin, and J. H. Lunsford, J. Am. Chem. Soc., 1985, 107, 5062.
- (a) K. Otsuka, K. Jinno, and A. Morikawa, Chem. Lett., 1985, 499;
 (b) K. Otsuka, Qin Liu, M. Hatano, and A. Morikawa, ibid., 1986, 467;
 (c) K. Otsuka, Qin Liu, M. Hatano, and A. Morikawa, ibid., 1986, 903;
 (d) K. Otsuka, Qin Liu, and A. Morikawa, J. Chem. Soc., Chem. Commun., 1986, 586;
 (e) K. Otsuka, K. Jinno, and A. Morikawa, J. Catal., 1986, 100, 353.
- 5 H. Imai and T. Tagawa, J. Chem. Soc., Chem. Commun., 1986, 52.
 6 T. Moriyama, N. Takasaki, E. Iwamatsu, and K. Aika, Chem. Lett., 1986, 1165; K. Aika, T. Moriyama, N. Takasaki, and E. Iwamatsu, J. Chem. Soc., Chem. Commun., 1986, 1210.
- 7 K. Asami, S. Hashimoto, T. Shikada, K. Fujimoto, and H. Tominaga, Chem. Lett., 1986, 1233.
- 8 U.S. Pat. 4,499,322(1985), 4,499,323(1985); WO 85/04821, WO 85/04867.